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The continuum percolation of circular cylinders has been studied for various values of the aspect ratio b�.
The percolation threshold is shown to have a maximum for b��2 when the cylinder length is equal to its
diameter. Other quantities such as the average intersection volume and the porosity also possess a maximum
for this value.
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The study of the macroscopic properties of fractured me-
dia is of large academic and practical interests; among the
possible applications are underground flow of fluids such as
water and oil and the storage of nuclear wastes. Generally
speaking, fractures are modeled as convex flat surfaces �1�,
but one may consider the case of fractures whose apertures
are not negligible with respect to their lateral extension.

The simplest way of modeling such thick fractures is to
study the properties of hollow circular cylinders of radius R
and length b. An immediate difficulty arises since the perco-
lation threshold �c�b�� obtained for isotropically oriented
capped cylinders �2� for values of b�=b /R larger than 3 is a
decreasing function of b�; moreover, �c �b�=3� is larger than
the value obtained for flat convex surfaces �3,4�, i.e., for
b�=0.

Therefore, one of the initial objectives of this study was to
reconcile these apparently contradictory results. In addition,
the overall porosity of a population of hollow cylinders is
expanded as a function of the number of cylinders per unit
volume and successfully compared to numerical data. Fi-
nally, the porosity at the percolation threshold is estimated.

A key concept which rationalizes the results relative to
percolation is the excluded volume which was introduced in
the fracture field by �5�. For a pair of objects F1 and F2, with
given shapes and orientations, the excluded volume Vex is the
volume in which the center of F2 must be relative to the
center of F1 in order for F1 and F2 to intersect. For instance,
if F1 and F2 are spheres with radii R1 and R2, the excluded
volume is a sphere with radius R1+R2. It is recalled in �1�
that if the objects are two dimensional, with areas Ai, perim-
eters Pi �i=1,2�, random orientations, and convex contours,
their excluded volume is

Vex,12 =
1

4
�A1P2 + A2P1� . �1�

If all the polygons are identical, Eq. �1� reduces to

Vex =
1

2
AP . �2�

This is a particular case of the kinematic formula for con-
vex bodies �6–8�. Let C1 and C2 be two convex bodies of

surfaces Si, average curvature Mi, and volume Vi �i=1,2�.
Then, the excluded volume is given by

Vex = V1 + V2 +
1

4�
�M1S1 + M2S2� . �3�

For two identical cylinders, Eq. �3� is simplified to

Vex = �2R3�1 +
3 + �

�
b� +

1

�
b�2� . �4�

Note that for b�=0, Eq. �4� implies Eq. �2� evaluated for
circular disks. Moreover, Vex is an increasing function of b�
for b��0.

Let � be the object density, i.e., the number of objects per
unit volume whether they are convex volumes or surfaces.
Vex may be used to define the dimensionless object density
��,

�� = �Vex. �5�

�� can be interpreted as a volumetric density since it is the
number of objects per volume Vex; however, �� also repre-
sents the mean number of intersections per object with other
objects in the network and, as such, it is a direct measure of
the connectivity. Therefore, the number of intersections per
unit volume �I is given by

�I =
1

2
�2Vex. �6�

The factor of 1/2 is due to the fact that the total number of
intersections is equal to half the number of intersections per
object multiplied by the number of objects.

This definition proved very successful in unifying the
critical densities of networks of fractures with different
shapes. For regular polygons with 3–20 vertices, as well as
for rectangles with an aspect ratio of 2 �3�, we obtained a
nearly constant percolation threshold,

�c��b�� = 2.26 � 0.04, �7�

a result in apparent contradiction with �2�, as already men-
tioned.

In order to resolve this contradiction, N randomly distrib-
uted cylinders of radius R and length b are generated in a
cubic domain � of size L with spatially periodic boundary
conditions. Let n be the unit vector parallel to the axis of the
cylinders. L�=L /R is the dimensionless size of �. Cylinder
centers are uniformly distributed in space and n is uniformly*pierre.adler@upmc.fr
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distributed on the unit sphere. For porosity measurements, �
is discretized into Nc

3 elementary cubes of size a=L /Nc; Nc is
typically on the order of 256. An example is given in Fig. 1.

The first step consists in the determination of the intersec-
tion of cylinders i and j �j� i ; i , j=1, . . . ,N� by following
the procedure of �9�. Moreover, the spatial periodic character
of the unit cell and of the network is taken into account as
detailed by �3�. A graph �1 is built whose vertices correspond
to the cylinders and whose edges correspond to the intersec-
tions of the cylinders. The percolating character of �1 along
one of the three spatial axes is determined as in �3�.

For each realization of the network, percolation is inves-
tigated along the three axes. In all the tests, Nr=500 realiza-
tions of the system are generated, from which the probability
	��� ,b� ,L�� of having a percolating cluster is derived. The
percolation threshold �c��b� ,L�� is estimated as the value for
which 	=0.5.

In the limit of large L�, the cylinder networks are expected
to follow the standard percolation theory with the percolation
threshold �c��b� ,
�, �10�

�c��b�,L�� − �c��b�,
� � L�−1/�, �8�

where � is the critical exponent. In our estimations of
�c��b� ,L��, the data for 	��� ,b� ,L�� were fitted by a two-
parameter error function of the form

	���,b�,L�� =
1

�2�
	

−


�� 1

L
exp
−

�� − �c��L���2

2�L�2 �d� , �9�

where L is the width of the transition region of 	�L� ,���
which follows a scaling relation in the limit of large L�,

L � L�−1/�. �10�

When L� increases, L tends to zero. Therefore, in infinite
systems, 	 switches abruptly from 0 to 1 when � exceeds
some critical density and percolation is a critical phenom-
enon.

The numerical results relative to the percolation threshold
can be summarized as follows. First, the approximation by
an error function was systematically verified and it was
found to be very good. Second, the extrapolation process to
infinite unit cells is also precise as shown by Fig. 2�a� for
b��2; similar results were obtained for b��2. The extrapo-
lated values of the percolation threshold �c��b� ,
� are dis-
played in Fig. 2�b� where they are compared to the results of
�2�. Two remarks can be obviously done. First, our results are
in very good quantitative agreement with �2� for b��2; sec-
ond, for b��2, �c��b� ,
� is an increasing function of b�.

Therefore, the apparent contradiction which motivated
this work is solved. The existence of a maximum in this
curve for b��2 went un-noticed to the best of our knowl-
edge.

It is also important to remark that the dimensionless per-
colation threshold depends on the shape of the three-
dimensional objects considered in this work. This is in strong
contrast to the findings for two-dimensional objects which
were studied in �4�; the numerical studies showed that �c� is
almost independent of the fracture shape.

Another interesting point is the existence of a maximum
for b��2 which corresponds to a length exactly equal to the
diameter of the cylinders. The curve is quite spiky at the
chosen scale. Moreover, the sphericity index � which is de-
fined as the ratio between the surface of the sphere of the
same volume and the surface of the cylinder is equal to

� = 2�3

4
�2/3 b�2/3

1 + b�
. �11�

It is easily shown that � is maximum for b�=2. Let us now
evaluate the porosity of the system for N identical void cyl-
inders thrown at random in � up to the second order of the
fracture density. The first approximation �o consists in add-

FIG. 1. Network of cylinders. Data are for Nc=256, ��=4,
R=60a, and b=12a.
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FIG. 2. The percolation thresh-
old. �a� The percolation threshold
�c��b� ,L�� as a function of the
width of the transition region L

for various b�. Data are for
b�=0.2 ���, 0.5 ���, 1 ���, 1.5
���. �b� The extrapolated values
of �c��b� ,
� as a function of the
dimensionless cylinder length b�;
data of Neda et al. �2� ���
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ing the volumes Vcyl=�R2b of all the cylinders and this
yields

�o = N
Vcyl

L3 . �12�

A more precise approximation �1 can be derived by sub-
tracting the intersections between pairs of cylinders. The av-
erage volume of intersection between two cylinders is de-

noted by V̄int. The average number of intersections per
cylinder is equal to ��. Therefore, the total pore volume is
equal to

Vpore = NVcyl −
N

2
�VexV̄int. �13�

The resulting porosity �1 is the ratio between the pore vol-
ume and the volume of the unit cell,

�1 =
Vpore

L3 =
N

L3Vcyl −
1

2

N

L3�VexV̄int. �14a�

Equivalently,

�1 = �Vcyl −
1

2
�2VexV̄int. �14b�

A dimensionless formula can be easily derived as

�1 = ��
Vcyl

Vex
−

��2

2

V̄int

Vex
. �14c�

The practical use of this formula necessitates the knowledge

of V̄int which can only be obtained numerically. This is done
in the following way. A cylinder is located in the center of a
cell of size 4�R2+b2 /4�1/2. Another cylinder is generated at
random inside this cell; the size of the cell is large enough to
include all the centers of the cylinders which can intersect
the cylinder located at its center. Whenever it intersects the
first cylinder, the two cylinders are discretized into small
cubes of side a and the intersection volume is determined.

V̄int is obtained by averaging over a large number Ni of in-
tersections

V̄int =
1

Ni
�
i=1

Ni

Vi. �15�

Calculations were done for Ni=1000, 2000, 5000, and
10 000 for each value of b�. Figure 3 displays the corre-

sponding results when V̄int is made dimensionless by Vex.

The numerical values for V̄int converge rapidly and almost
identical values are obtained for Ni=5000 and 10 000.

It is interesting to notice that the dimensionless intersec-
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FIG. 3. The average intersection volume V̄int as a function of the
dimensionless cylinder length b� for a fixed number of intersections
Ni. Data are for Ni=1000 ���, 2000 ���, 5000 ���, and 10 000 ���.
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FIG. 4. �a�–�c� The average
porosity as a function of the di-
mensionless density ��; data are
for �d �16� ���, �o �12� ���, and
�1 �14c� ���; subfigures are for
b�=0.5 �a�, 2 �b�, and 5 �c�. �d�
The porosity as a function of the
dimensionless cylinder length b�
for various values of the cylinder
density ��; data are for ��=0.2
���, 0.5 ���, 1.0 ���, 1.5 ���, 2.0
���, �c� ���, 3.0 ���, 4.0 ���, and
5.0 ���.
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tion volume has a maximum for values of b� close to 2 as
���b� ,
� and �. The porosity of a network of random cylin-
ders can be easily determined by discretizing the unit cell in
which the cylinders are generated into elementary cubes.
Since each elementary cube of size a is either solid or void,
the porosity is obtained by

�d =
nv

Nc
3 . �16�

where nv is the total number of void cubes.
In order to compare the three formulas �14�, �12� and �16�,

Nr unit cells are generated and the porosity �d is determined
and averaged. Calculations were systematically performed
for b�=0.1, 0.5, 1, 2, 3, and 5.

Some of the results are illustrated in Figs. 4�a�–4�c� for
three representative values of b�. Since the expansion in

terms of �� is alternate, it is logical that �� overestimates Eq.
�16� while Eq. �14c� underestimates it.

The major result of these calculations is that porosity is
precisely estimated by expansion �14c� for all b� and for ��
smaller than 3, i.e., for densities smaller than the percolation
thresholds displayed in Fig. 2�b�. Another way to display
these results is given in Fig. 4�d� which provides porosity as
a function of b� for various values of ��. Note that one curve
is obtained at percolation, i.e., for a variable density. All
these curves have a maximum for again b� close to 2. This
maximum is slightly different for the curve obtained at per-
colation.

This study can be concluded as follows. The dimension-
less percolation threshold, the average intersection volume,
and the sphericity index are nonmonotonic functions of the
aspect ratio b� of circular cylinders. Moreover, in contrast to
previous results obtained for plane convex polygons �3,4�, �c�
depends on the shape of the cylinders.

�1� P. M. Adler and J.-F. Thovert, Fractures and Fracture Net-
works �Kluwer Academic Publishers, Dordrecht, 1999�.

�2� Z. Neda, R. Florian, and Y. Brechet, Phys. Rev. E 59, 3717
�1999�.

�3� O. Huseby, J.-F. Thovert, and P. M. Adler, J. Phys. A 30, 1415
�1997�.

�4� V. V. Mourzenko, J.-F. Thovert, and P. M. Adler, Phys. Rev. E
72, 036103 �2005�.

�5� I. Balberg, C. H. Anderson, S. Alexander, and N. Wagner,
Phys. Rev. B 30, 3933 �1984�.

�6� L. A. Santalo, Integral Geometry and Geometric Probability
�Addison Wesley, Reading, MA, 1976�.

�7� R. Schneider and W. Weil, Integralgeometrie �Teubner, Stut-
tgart, 1992�.

�8� T. Kihara, Rev. Mod. Phys. 25, 831 �1953�.
�9� J. S. Ketchel and P. M. Larochelle, J. Mech. Des. 130, 092305

�2008�.
�10� D. Stauffer and A. Aharony, Introduction to Percolation

Theory �Taylor and Francis, Bristol, PA, 1992�.

BRIEF REPORTS PHYSICAL REVIEW E 79, 052101 �2009�

052101-4


